Published in

EDP Sciences, Astronomy & Astrophysics, (661), p. A36, 2022

DOI: 10.1051/0004-6361/202141501

Links

Tools

Export citation

Search in Google Scholar

Studying the merging cluster Abell 3266 with eROSITA

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abell 3266 is one of the X-ray brightest galaxy clusters in the sky and is a well-known merging system. Using the ability of the eROSITA telescope onboard SRG (Spectrum Röntgen Gamma) to observe a wide field with a single pointing, we analysed a new observation of the cluster out to a radius of R200. The X-ray images highlight sub-structures present in the cluster, including the north-east-south-west merger seen in previous ASCA, Chandra, and XMM-Newton data, a merging group towards the north-west, and filamentary structures between the core and one or more groups towards the west. We compute spatially resolved spectroscopic maps of the thermodynamic properties of the cluster, including the metallicity. The merging subclusters are seen as low entropy material within the cluster. The filamentary structures could be the rims of a powerful outburst of an active galactic nucleus, or most likely material stripped from the western group(s) as they passed through the cluster core. Seen in two directions is a pressure jump at a radius of 1.1 Mpc, which is consistent with a shock with a Mach number of ~1.5–1.7. The eROSITA data confirm that the cluster is not a simple merging system, but it is made up of several subclusters which are merging or will shortly merge. We computed a hydrostatic mass from the eROSITA data, finding good agreement with a previous XMM-Newton result. With this pointing we detect several extended sources, where we find secure associations between z = 0.36–1.0 for seven of them, that is background galaxy groups and clusters, highlighting the power of eROSITA to find such systems.