Published in

Nature Research, npj Quantum Materials, 1(6), 2021

DOI: 10.1038/s41535-021-00390-x

Links

Tools

Export citation

Search in Google Scholar

Nematicity in a cuprate superconductor revealed by angle-resolved photoemission spectroscopy under uniaxial strain

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe nature of the pseudogap and its relationship with superconductivity are one of the central issues of cuprate superconductors. Recently, a possible scenario has been proposed that the pseudogap state is a distinct phase characterized by spontaneous rotational symmetry breaking called “nematicity” based on transport and magnetic susceptibility measurements, where the symmetry breaking was observed below the pseudogap temperature T. Here, we report a temperature-dependent ARPES study of nematicity in slightly overdoped Bi1.7Pb0.5Sr1.9CaCu2O8+δ triggered by a uniaxial strain applied along one of the Cu–O bond directions. While the nematicity was enhanced in the pseudogap state as in the previous studies, it was suppressed in the superconducting state. These results indicate that the pseudogap state is characterized by spontaneous rotational symmetry breaking and that the nematicity may compete with superconductivity. Relationship between the nematicity and charge-density waves, both of which are observed in the pseudogap state, is discussed.