Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, Journal of Obesity, (2021), p. 1-9, 2021

DOI: 10.1155/2021/6616983

Links

Tools

Export citation

Search in Google Scholar

Proteomic and Metabolomic Characterization of Metabolically Healthy Obesity: A Descriptive Study from a Swedish Cohort

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background/Aims. Obesity is a well-established risk factor for the development of numerous chronic diseases. However, there is a small proportion of obese individuals that seem to escape these aforementioned conditions—Metabolically Healthy Obesity (MHO). Our aim was to do a metabolic and biomarker profiling of MHO individuals. Method. Associations between different biomarkers (proteomics, lipidomics, and metabolomics) coupled to either MHO or metabolically unhealthy obese (MUO) individuals were analyzed through principal component analysis (PCA). Subjects were identified from a subsample of 416 obese individuals, selected from the Malmö Diet and Cancer study—Cardiovascular arm (MDCS-CV, n = 3,443). They were further divided into MHO (n = 143) and MUO (n = 273) defined by a history of hospitalization, or not, at baseline inclusion, and nonobese subjects (NOC, n = 3,027). Two distinctive principle components (PL2, PP5) were discovered with a significant difference and thus further investigated through their main loadings. Results. MHO individuals had a more metabolically favorable lipid and glucose profile than MUO subjects, that is, lower levels of traditional blood glucose and triglycerides, as well as a trend of lower metabolically unfavorable lipid biomarkers. PL2 (lipidomics, p = 0.02 ) showed stronger associations of triacylglycerides with MUO, whereas phospholipids correlated with MHO. PP5 (proteomics, p = 0.01 ) included interleukin-1 receptor antagonist (IL-1ra) and leptin with positive relations to MUO and galanin that correlated positively to MHO. The group differences in metabolite profiles were to a large extent explained by factors included in the metabolic syndrome. Conclusion. Compared to MUO individuals, corresponding MHO individuals present with a more favorable lipid metabolic profile, accompanied by a downregulation of potentially harmful proteomic biomarkers. This unique and extensive biomarker profiling presents novel data on potentially differentiating traits between these two obese phenotypes.