Published in

IOP Publishing, Journal of Physics B: Atomic, Molecular and Optical Physics, 18(54), p. 185601, 2021

DOI: 10.1088/1361-6455/ac2e4b

Links

Tools

Export citation

Search in Google Scholar

Three-dimensional tomographic imaging of CO molecular orbitals reveals multi-electron effects

Journal article published in 2021 by Zhongxue Ren, Yan Yang, Yalei Zhu, Xiaolei Zan, Jing Zhao ORCID, Zengxiu Zhao ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract According to the asymmetric molecular orbital reconstruction algorithm, which divides orbital into gerade and ungerade components and which does not depend on the unidirectional recollisional condition, we obtain the two-dimensional highest occupied molecular orbital (HOMO) of CO based on the directly calculated transition dipole moment and the harmonic spectra calculated by the Lewenstein model, respectively, which is the three-dimensional (3D) HOMO projected onto the plane perpendicular to the laser propagation direction. In order to retrieve the full orbital function, a 3D molecular orbital tomography (MOT) method is developed and is successfully applied to the reconstructions of the HOMO of CO, which simplifies the 3D imaging process of orbitals of linear molecules, and is expected to be extended to reconstruct the 3D orbitals of nonlinear molecules. In addition, the time-dependent density functional theory is employed to acquire the harmonic spectra of CO in a 800 nm and 1500 nm wavelength laser, respectively. The comparison of these two reconstruction results helps identify the multi-electron effects for asymmetric MOT, which requires further study. This work advances the development of MOT and is expected to reveal multi-electron effects in orbital imaging of complex polyatomic molecules.