Published in

MDPI, Foods, 10(10), p. 2401, 2021

DOI: 10.3390/foods10102401

Links

Tools

Export citation

Search in Google Scholar

Effect on Nutritional and Functional Characteristics by Encapsulating Rose canina Powder in Enriched Corn Extrudates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Wild Rose canina fruit represents a rich source of bioactive compounds such as minerals, phenolic compounds, vitamins, carotenoids, folate, and antioxidant activity that still needs to be further exploited. Thus, this study aimed to use wild Rosa canina fruit encapsulated powder with different biopolymers aiming to manufacture ready-to-eat products, such as corn extrudates. To achieve this goal, extrudate physicochemical characteristics, such as water content (xw), water activity (aw), water absorption index (WAI), water solubility index (WSI), swelling index (SWE), hygroscopicity (Hy), expansion index (SEI), bulk density (ρb), porosity (ε), textural, optical; nutritional; and functional analysis (phenolic acids, flavonoids, ascorbic and dehydroascorbic acids, vitamin C, carotenoids, folates, antioxidant activity, and minerals) were determined. Results highlighted that 4 and 8% addition of wild Rose canina fruit encapsulated powder could be successfully used in the corn extrudates, showing the positive influence on its nutritional and functional value. Strong positive Pearson correlations were identified between antioxidant capacity and total flavonoids, carotenoids, folates, and vitamin C of mixtures and extrudates Minerals increased their amount during the extrusion process, reaching the highest values at an addition of 8% rosehip encapsulated with pea protein biopolymer. Furthermore, from the biopolymers used in the present study, pea protein powder exhibited the highest protection on the analyzed bioactive compounds against the extrusion process.