Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 20(22), p. 11120, 2021

DOI: 10.3390/ijms222011120

Links

Tools

Export citation

Search in Google Scholar

ASP-Enzymosomes with Saccharomyces cerevisiae Asparaginase II Expressed in Pichia pastoris: Formulation Design and In Vitro Studies of a Potential Antileukemic Drug

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The bacterial enzyme asparaginase is the main treatment option for acute lymphoblastic leukemia. However, it causes side effects, such as immunological reactions, and presents undesirable glutaminase activity. As an alternative, we have been studying asparaginase II from Saccharomyces cerevisiae, coded by ASP3 gene, which was cloned and expressed in Pichia pastoris. The recombinant asparaginase (ASP) presented antileukemic activity and a glutaminase activity 100 times lower in comparison to its asparaginase activity. In this work, we describe the development of a delivery system for ASP via its covalent attachment to functionalized polyethylene glycol (PEG) polymer chains in the outer surface of liposomes (ASP-enzymosomes). This new delivery system demonstrated antiproliferative activity against K562 (chronic myeloid leukemia) and Jurkat (acute lymphocytic leukemia) cell lines similar to that of ASP. The antiproliferative response of the ASP-enzymosomes against the Jurkat cells suggests equivalence to that of the free Escherichia coli commercial asparaginase (Aginasa®). Moreover, the ASP-enzymosomes were stable at 4 °C with no significant loss of activity within 4 days and retained 82% activity up to 37 days. Therefore, ASP-enzymosomes are a promising antileukemic drug.