Published in

MDPI, Plants, 10(10), p. 2170, 2021

DOI: 10.3390/plants10102170

Links

Tools

Export citation

Search in Google Scholar

Alleviation of Chlorpyrifos Toxicity in Maize (Zea mays L.) by Reducing Its Uptake and Oxidative Stress in Response to Soil-Applied Compost and Biochar Amendments

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Chlorpyrifos (CP) is a pesticide used extensively in agricultural crops. Residual CP has been found in a variety of soils, vegetables and fruits indicating a serious danger to humans. Therefore, it is necessary to restrict its entry into agricultural products for food safety. A wire-house pot experiment was conducted with maize plants in biochar- and compost-amended soil (at 0.25% and 0.50%, respectively, in weight-by-weight composition) contaminated with 100 and 200 mg kg−1 of CP, respectively. Results indicated toxicity at both CP levels (with 84% growth reduction) at CP 200 mg kg−1. However, application of compost and biochar at the 0.50% level improved the fresh weight (2.8- and 4-fold, respectively). Stimulated superoxide dismutase (SOD) and peroxidase (POX) activities and depressed catalase (CAT) activity were recorded in response to CP contamination and were significantly recovered by the amendments. Both amendments significantly decreased the CP phytoavailability. With biochar, 91% and 76% reduction in the CP concentration in maize shoots and with compost 72% and 68% reduction was recorded, at a 0.50% level in 100 and 200 mg kg−1 contaminated treatments respectively. Compost accelerated the CP degradation in postharvest soil. Therefore, biochar and compost amendments can effectively be used to decrease CP entry in agricultural produce by reducing its phytoavailability.