Published in

Oxford University Press, Endocrinology, 2(149), p. 711-716, 2007

DOI: 10.1210/en.2007-0620

Links

Tools

Export citation

Search in Google Scholar

Estrogen-Enhanced Gene Expression of Lipoprotein Lipase in Heart Is Antagonized by Progesterone

Journal article published in 2007 by Dianxin Liu, Anne Deschamps, Kenneth S. Korach ORCID, Elizabeth Murphy
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Although estrogen has effects on the heart, little is known regarding which genes in the heart are directly responsive to estrogen. We have shown previously that lipoprotein lipase (LPL) expression was increased in female hearts compared with male hearts. To test whether LPL gene expression in heart is regulated by estrogen, we perfused mouse hearts from ovariectomized females with 100 nM 17beta-estradiol or vehicle for 2 h, after which hearts were frozen, and RNA was isolated. The SYBR green real-time PCR method was used to detect LPL gene expression. We found that addition of 17beta-estradiol to hearts from ovariectomized females resulted in a significant increase in LPL mRNA. This estrogen effect on LPL gene expression in mouse heart can be blocked by the estrogen receptor (ER) antagonist ICI 182,780 or by progesterone. We also identified a potential estrogen receptor element (ERE) enhancer sequence located in the first intron of the mouse LPL gene. The potential ERE sequence was linked to a TATA-luciferase (LUC) reporter plasmid in HeLa cells. Both ERalpha and ERbeta stimulated strong activity on the heterologous promoter reporter in Hela cells upon estrogen addition. Both ERalpha and ERbeta activities on the LPL ERE reporter were abrogated by the ER antagonist ICI 182,780. Progesterone also dose dependently inhibited the estrogen-mediated increase in LPL ERE reporter activity. These results show that heart LPL is an estrogen-responsive gene exhibiting an intronic regulatory sequence.