Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 19(98), p. 10886-10891, 2001

DOI: 10.1073/pnas.191260798

Links

Tools

Export citation

Search in Google Scholar

An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci

Journal article published in 2001 by Mariana G. Pinho, Hermínia de Lencastre, Alexander Tomasz ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The blanket resistance of methicillin-resistant Staphylococcus aureus to all β-lactam antibiotics—which had such a devastating impact on chemotherapy of staphylococcal infections—is related to the properties of the key component of this resistance mechanism: the “acquired” penicillin-binding protein (PBP)-2A, which has unusual low affinity for all β-lactam antibiotics. Until now, the accepted model of resistance implied that in the presence of β-lactam antibiotics in the surrounding medium, PBP2A must take over the biosynthesis of staphylococcal cell wall from the four native staphylococcal PBPs because the latter become rapidly acylated and inactivated at even low concentrations of the antibiotic. However, recent observations indicate that this model requires revision. Inactivation of the transglycosylase domain, but not the transpeptidase domain, of PBP2 of S. aureus prevents expression of β-lactam resistance, despite the presence of the low-affinity PBP2A. The observations suggest that cell-wall synthesis in the presence of β-lactam antibiotics requires the cooperative functioning of the transglycosylase domain of the native staphylococcal PBP2 and the transpeptidase domain of the PBP2A, a protein imported by S. aureus from an extra species source.