Published in

MDPI, Journal of Clinical Medicine, 21(10), p. 4860, 2021

DOI: 10.3390/jcm10214860

Links

Tools

Export citation

Search in Google Scholar

Exploratory Profiling of Extracellular MicroRNAs in Cerebrospinal Fluid Comparing Leptomeningeal Metastasis with Other Central Nervous System Tumor Statuses

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The diagnosis of leptomeningeal metastasis (LM) is often difficult due to the paucity of cancer cells in cerebrospinal fluid (CSF) and nonspecific findings on neuroimaging. Investigations of extracellular microRNAs (miRNAs) in CSF could be used for both the diagnosis and study of LM pathogenesis because they reflect the activity of disseminating cancer cells. We isolated CSF extracellular miRNAs from patients (n = 65) of different central nervous system tumor statuses, including cancer control, healthy control, LM, brain metastasis (BM), and primary brain tumor (BT) groups, and performed miRNA microarrays. In unsupervised clustering analyses, all LM and two BM samples showed unique profiles. Among 30 miRNAs identified for LM-specific biomarkers via a Prediction Analysis of Microarrays, miR-335-5p and miR-34b-3p were confirmed in both the discovery and validation samples (n = 23). Next, we performed a significance analysis of the microarray (SAM) to extract discriminative miRNA profiles of two selected CSF groups, with LM samples revealing a greater number of discriminative miRNAs than BM and BT samples compared to controls. Using SAM comparisons between LM and BM samples, we identified 30 upregulated and 6 downregulated LM miRNAs. To reduce bias from different primary cancers, we performed a subset analysis with primary non-small cell lung cancer, and 12 of 13 upregulated miRNAs in LM vs. BM belonged to the upregulated miRNAs in LM. We identified possible target genes and their biological processes that could be affected by LM discriminative miRNAs in NSCLC using the gene ontology database. In conclusion, we identified a unique extracellular miRNA profile in LM CSF that was different from BM, suggesting the use of miRNAs as LM biomarkers in studies of LM pathogenesis.