Published in

Public Library of Science, PLoS ONE, 10(16), p. e0258927, 2021

DOI: 10.1371/journal.pone.0258927

Links

Tools

Export citation

Search in Google Scholar

Changes in precipitation and atmospheric N deposition affect the correlation between N, P and K but not the coupling of water-element in Haloxylon ammodendron

Journal article published in 2021 by Zixun Chen, Xuejun Liu, Xiaoqing Cui ORCID, Yaowen Han, Guoan Wang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Global changes in precipitation and atmospheric N deposition affect the geochemical cycle of the element and its hydrological cycle in the ecosystem. It may also affect the relationship between plant water use efficiency (WUE) and nutrients, as well as the relationship between plant nutrients. Desert ecosystems are vulnerable to global changes. Haloxylon ammodendron is the dominant species in the Asian desert. Revealing the variations in these relationships in H. ammodendron with precipitation and N deposition will enhance our understanding of the responses of plants to global change in terms of trade-off strategies of nutrient absorption, water and element geochemical cycles in desert ecosystems. Thus, we conducted field experiments with different amounts of water and N. This study showed that WUE of H. ammodendron was not correlated with nitrogen content (N), phosphorus content (P), and potassium content (K) when water and N supply were varied (p > 0.05 for WUE vs. N, P, and K), suggesting lack of coupling between water use and nutrient economics. This result was associated with the lack of correlation between plant nutrients and gas exchang in H. ammodendron. However, water addition, N addition and the interaction between both of them all played a role in the correlation between plant N, P and K owing to their different responses to water and N supplies. This indicates that global changes in precipitation and N deposition will affect N, P and K geochemical cycles in the Asian deserts dominated by H. ammodendron, and drive changes in the relationships between plant nutrients, resulting in changes in the trade-off strategy of plant absorption of N, P, and K.