Published in

Springer, Experiments in Fluids, 11(62), 2021

DOI: 10.1007/s00348-021-03330-4

Links

Tools

Export citation

Search in Google Scholar

Motion blur treatment utilizing deep learning for time-resolved particle image velocimetry

Journal article published in 2021 by Jeong Suk Oh, Hoonsang Lee, Wontae Hwang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract A new method is hereby presented to reduce motion blur induced error of time-resolved particle image velocimetry. The Monte-Carlo method (MCM) was applied to synthetic images to quantify the error due to blurred particle images. As the size of the streaks grew, it caused large errors in estimating displacements and increased the frequency of outliers beyond 20% for some cases. The mean displacement error was also about 0.2 – 0.55 px, which is larger than the nominally accepted PIV uncertainty of 0.1 px. A novel deblur filter (i.e., the generator) using a generative adversarial network (GAN) was developed, using 1 million synthetic images. The generator was verified using unlearned data from the MCM. The frequency of outliers, which was originally higher than 20% for the worst case, decreased to about 6%, and the displacement error was reduced to less than 0.3 px. The generator was applied to actual experimental images of a synthetic jet that had image blur and resulted in a substantial reduction of outliers. We also checked the performance of the generator in a uniform channel flow, and found that the deblurred images resulted in less PIV velocity error, and was closer to the results from the sharp images than those from the blurry images. Graphic abstract