Dissemin is shutting down on January 1st, 2025

Published in

International Union of Crystallography, Acta Crystallographica. Section d, Structural Biology, 11(77), p. 1365-1377, 2021

DOI: 10.1107/s2059798321009955

Links

Tools

Export citation

Search in Google Scholar

Monitoring reversion of hepatitis C virus-induced cellular alterations by direct-acting antivirals using cryo soft X-ray tomography and infrared microscopy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Hepatitis C virus (HCV) is an enveloped RNA virus. One of the hallmarks of HCV infection is a rearrangement of the host cell membranes, known as the `membranous web'. Full-field cryo soft X-ray tomography (cryo-SXT) in the water-window energy range (284–543 eV) was performed on the MISTRAL beamline to investigate, in whole unstained cells, the morphology of the membranous rearrangements induced in HCV replicon-harbouring cells in conditions close to the living physiological state. All morphological alterations could be reverted by a combination of sofosbuvir/daclatasvir, which are clinically approved antivirals (direct-acting antivirals; DAAs) for HCV infection. Correlatively combining cryo-SXT and 2D synchrotron-based infrared microscopy provides critical information on the chemical nature of specific infection-related structures, which allows specific patterns of the infection process or the DAA-mediated healing process to be distinguished.