Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Materials Interfaces, 9(8), 2021

DOI: 10.1002/admi.202001768

Links

Tools

Export citation

Search in Google Scholar

Bulk and Short‐Circuit Anion Diffusion in Epitaxial Fe<sub>2</sub>O<sub>3</sub> Films Quantified Using Buried Isotopic Tracer Layers

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractSelf‐diffusion is a fundamental physical process that, in solid materials, is intimately correlated with both microstructure and functional properties. Local transport behavior is critical to the performance of functional ionic materials for energy generation and storage, and drives fundamental oxidation, corrosion, and segregation phenomena in materials science, geosciences, and nuclear science. Here, an adaptable approach is presented to precisely characterize self‐diffusion in solids by isotopically enriching component elements at specific locations within an epitaxial film stack, and measuring their redistribution at high spatial resolution in 3D with atom probe tomography. Nanoscale anion diffusivity is quantified in a‐Fe2O3 thin films deposited by molecular beam epitaxy with a thin (10 nm) buried tracer layer highly enriched in 18O. The isotopic sensitivity of the atom probe allows precise measurement of the initial sharp layer interfaces and subsequent redistribution of 18O after annealing. Short‐circuit anion diffusion through 1D and 2D structural defects in Fe2O3 is also directly visualized in 3D. This versatile approach to study precisely tailored thin film samples at high spatial and mass fidelity will facilitate a deeper understanding of atomic‐scale diffusion phenomena.