Published in

Nature Research, npj Computational Materials, 1(7), 2021

DOI: 10.1038/s41524-021-00644-z

Links

Tools

Export citation

Search in Google Scholar

Three-dimensional coherent X-ray diffraction imaging via deep convolutional neural networks

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAs a critical component of coherent X-ray diffraction imaging (CDI), phase retrieval has been extensively applied in X-ray structural science to recover the 3D morphological information inside measured particles. Despite meeting all the oversampling requirements of Sayre and Shannon, current phase retrieval approaches still have trouble achieving a unique inversion of experimental data in the presence of noise. Here, we propose to overcome this limitation by incorporating a 3D Machine Learning (ML) model combining (optional) supervised learning with transfer learning. The trained ML model can rapidly provide an immediate result with high accuracy which could benefit real-time experiments, and the predicted result can be further refined with transfer learning. More significantly, the proposed ML model can be used without any prior training to learn the missing phases of an image based on minimization of an appropriate ‘loss function’ alone. We demonstrate significantly improved performance with experimental Bragg CDI data over traditional iterative phase retrieval algorithms.