Published in

MDPI, Agronomy, 11(11), p. 2162, 2021

DOI: 10.3390/agronomy11112162

Links

Tools

Export citation

Search in Google Scholar

Genetics and Genomics of Fusarium Wilt of Chilies: A Review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Hot pepper (Capsicum annum L.) is a major spice crop and is used worldwide for its nutritional value. In the field, its plant is susceptible to various fungal diseases, including fusarium wilt, caused by soil-borne fungus Fusarium oxysporum f. sp. capsici, which can survive in the soil for several years. The infected plant can be recognized by the yellowing of older leaves and downward curling of apical shoots, followed by plant wilting and ultimately the death of the plant. The resistance mechanism in plants is controlled by a single dominant gene, and conventional plant breeding techniques are used to develop a wilt-resistant germplasm. Non-conventional techniques such as gene pyramiding and expression enhancement of antifungal genes could be used to shorten the time to develop resistance against fusarium wilt in hot peppers. In this review, we discuss different aspects of the disease and the molecular basis of resistance in chili/hot pepper plants. Furthermore, this review covers the scope of conventional and non-conventional breeding strategies and different management approaches used to tackle the disease.