Dissemin is shutting down on January 1st, 2025

Published in

Bentham Science Publishers, Current Alzheimer Research, 1(19), p. 1-15, 2022

DOI: 10.2174/1567205018666211029164106

Links

Tools

Export citation

Search in Google Scholar

Astrocyte Reactivity in Alzheimer’s Disease: Therapeutic Opportunities to Promote Repair

Journal article published in 2022 by Nazanin Mirzaei, Nicola Davis, Magdalena Sastre, Tsz Wing Chau ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

: Astrocytes are fast climbing the ladder of importance in neurodegenerative disorders, particularly in Alzheimer’s disease (AD), with the prominent presence of reactive astrocytes sur- rounding amyloid β- plaques, together with activated microglia. Reactive astrogliosis, implying morphological and molecular transformations in astrocytes, seems to precede neurodegeneration, suggesting a role in the development of the disease. Single-cell transcriptomics has recently demon- strated that astrocytes from AD brains are different from “normal” healthy astrocytes, showing dys- regulations in areas such as neurotransmitter recycling, including glutamate and GABA, and im- paired homeostatic functions. However, recent data suggest that the ablation of astrocytes in mouse models of amyloidosis results in an increase in amyloid pathology as well as in the inflammatory profile and reduced synaptic density, indicating that astrocytes mediate neuroprotective effects. The idea that interventions targeting astrocytes may have great potential for AD has therefore emerged, supported by a range of drugs and stem cell transplantation studies that have successfully shown a therapeutic effect in mouse models of AD. In this article, we review the latest reports on the role and profile of astrocytes in AD brains and how manipulation of astrocytes in animal mod- els has paved the way for the use of treatments enhancing astrocytic function as future therapeutic avenues for AD.