IOP Publishing, Journal of Physics: Condensed Matter, 8(34), p. 085001, 2021
Full text: Download
Abstract Utilizing first-principles calculations, charge transfer doping process of single layer tin selenide (SL-SnSe) via the surface adsorption of various organic molecules was investigated. Effective p-type SnSe, with carrier concentration exceeding 3.59 × 1013 cm−2, was obtained upon adsorption of tetracyanoquinodimethane or 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane on SL-SnSe due to their lowest unoccupied molecular orbitals acting as shallow acceptor states. While we could not obtain effective n-type SnSe through adsorption of tetrathiafulvalene (TTF) or 1,4,5,8-tetrathianaphthalene on pristine SnSe due to their highest occupied molecular orbitals (HOMO) being far from the conduction band edge of SnSe, this disadvantageous situation can be amended by the introduction of an external electric field perpendicular to the monolayer surface. It is found that Snvac will facilitate charge transfer from TTF to SnSe through introducing an unoccupied gap state just above the HOMO of TTF, thereby partially compensating for the p-type doping effect of Snvac. Our results show that both effective p-type and n-type SnSe can be obtained and tuned by charge transfer doping, which is necessary to promote its applications in nanoelectronics, thermoelectrics and optoelectronics.