Published in

EDP Sciences, Astronomy & Astrophysics, (661), p. A32, 2022

DOI: 10.1051/0004-6361/202141410

Links

Tools

Export citation

Search in Google Scholar

Peculiar X-ray transient SRGA J043520.9+552226/AT2019wey discovered with SRG/ART-XC

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Context. During its ongoing all-sky survey, the Mikhail Pavlinsky ART-XC (Astronomical Roentgen Telescope - X-ray Concentrator) telescope on board the Spectrum-Roentgen-Gamma (SRG) observatory is set to discover new X-ray sources, many of which can be transient. Here we report the discovery and multiwavelength follow-up of a peculiar X-ray source SRGA J043520.9+552226 = SRGe J043523.3+552234. This is the high-energy counterpart of the optical transient AT2019wey. Aims. Through its sensitivity and the survey strategy, the Mikhail Pavlinsky ART-XC telescope uncovers poorly studied weak transient populations. Using the synergy with current public optical surveys, we aim to reveal the nature of these transients to study their parent populations. SRGA J043520.9+552226 is the first transient detected by ART-XC that has a bright optical counterpart suitable for further studies. Methods. We used available public X-ray and optical data and observations with SRG, INTEGRAL, NuSTAR, NICER, Swift, and ground-based telescopes to investigate the spectral energy distributions of the source in different phases of the outburst. Results. Based on X-ray spectral and timing properties derived from space observations, optical spectroscopy, and photometry obtained with the 2.5 m and RC600 telescopes of the Caucasian Mountain Observatory of the Sternberg Astronomical Institute of Moscow State University, we propose that the source is a black hole in a low-mass close X-ray binary system.