Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, IOP Conference Series: Earth and Environmental Science, 1(880), p. 012002, 2021

DOI: 10.1088/1755-1315/880/1/012002

Links

Tools

Export citation

Search in Google Scholar

Quantifying the joint distribution of drought indicators in Borneo fire-prone area

Journal article published in 2021 by Mohamad Khoirun Najib ORCID, Sri Nurdiati ORCID, Ardhasena Sopaheluwakan
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Borneo island is prone to fire due to its large peat soil area. Fire activity in Borneo is associated with regional climate conditions, such as total precipitation, precipitation anomaly, and dry spells. Thus, knowing the relationship between drought indicators can provide preliminary knowledge in developing a fire risk model. Therefore, this study aims to quantify the copula-based joint distribution and to analyze the coincidence probability between drought indicators in Borneo fire-prone areas. From dependence analysis, we found that the average of 2 months of total precipitation (TP), monthly precipitation anomalies (PA), and the total of 3 months of dry spells (DS) provides a moderate correlation to hotspots in Borneo. The results show the probability of the dry-dry period is 26.63, 17.66, and 18.54 % for TP-DS, PA-DS, and TP-PA, respectively. All of these are higher than the probability of the wet-wet period, which is 25.01, 16.12, and 17.98 % for TP-DS, PA-DS, and TP-PA, respectively. Through the probability, the return period of TP-DS in the dry-dry situation 3.2 months/year, meaning the dry situation in total precipitation and dry spells that occur simultaneously could appear about 3 months in a year on average. Furthermore, the return period of PA-DS and TP-PA in the dry-dry situation is 2.12 and 2.22 months/year, respectively. Moreover, the probability of dry spells in dry conditions when given total precipitation in dry conditions is higher than given precipitation anomalies in dry conditions.