Published in

SAGE Publications, Veterinary Pathology, 1(59), p. 152-156, 2021

DOI: 10.1177/03009858211048650

Links

Tools

Export citation

Search in Google Scholar

Systemic amyloidosis derived from EFEMP1 in a captive Tsushima leopard cat

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In animals, most cases of systemic amyloidosis are of amyloid A type, and the other types of systemic amyloidoses are rare. This study analyzed systemic amyloidosis in a 15-year-old female Tsushima leopard cat. Amyloid deposits strongly positive for Congo red staining were observed in the arterial walls as well as the interstitium in multiple organs. Mass spectrometry–based proteomic analysis with laser microdissection of amyloid deposits identified epidermal growth factor–containing fibulin-like extracellular matrix protein 1 (EFEMP1) as a prime amyloidogenic protein candidate. Immunohistochemistry showed that the amyloid deposits were positive for the N-terminal region of EFEMP1. From these results, the present case was diagnosed as EFEMP1-derived amyloidosis. It is the first such case in an animal. EFEMP1-derived amyloidosis in humans has recently been reported as a systemic amyloidosis, and it is known as an age-related venous amyloidosis. The present case showed different characteristics from human EFEMP1-derived amyloidosis, including the amyloid deposition sites and the amyloidogenic region of the EFEMP1 protein, suggesting a different pathogenesis between Tsushima leopard cat and human EFEMP1-derived amyloidosis.