Published in

Oxford University Press, Tree Physiology, 3(42), p. 488-500, 2021

DOI: 10.1093/treephys/tpab149

Links

Tools

Export citation

Search in Google Scholar

Evidence for conifer sucrose transporters’ functioning in the light-dependent adjustment of sugar allocation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Sucrose is the central unit of carbon and energy in plants. Active intercellular transport of sucrose is mediated by sucrose transporters (SUTs), genes for which have been found in the genomes of all land plants. However, they have only been assigned functions in angiosperm species. Here, we cloned two types of SUTs from two gymnosperms, the conifers Cedrus deodara (Roxb. G. Don) and Pinus massoniana Lambert, and analyzed their sucrose transport activities. Uptake of the fluorescent sucrose-analog esculin into tobacco epidermis cells expressing the conifer SUT confirmed their transport ability. To determine their function in planta, we investigated their mRNA abundance in relation to photosynthesis and sugar levels in leaves, inner bark, wood and roots. Combined with measurements of protein abundance and immunolocalization of C. deodara SUTs, our results suggest a role for CdSUT1G and CdSUT2 in supporting phloem transport under varying environmental conditions. The implications of these findings regarding conifer physiology and SUT evolution are discussed.