Published in

Wiley, The Plant Journal, 2(73), p. 262-275, 2012

DOI: 10.1111/tpj.12032

Links

Tools

Export citation

Search in Google Scholar

The ammonium/nitrate ratio is an input signal in the temperature-modulated,SNC1-mediated andEDS1-dependent autoimmunity ofnudt6-2 nudt7

Journal article published in 2012 by Hai Wang, Yuqing Lu, Pei Liu, Wei Wen, Jianhua Zhang ORCID, Xiaochun Ge, Yiji Xia
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AtNUDT7 was reported to be a negative regulator of EDS1-mediated immunity in Arabidopsis. However, the underlying molecular and genetic mechanism of the AtNUDT7-regulated defense pathway remains elusive. Here we report that AtNUDT7 and its closest paralog AtNUDT6 function as novel negative regulators of SNC1, a TIR-NB-LRR-type R gene. SNC1 is upregulated at transcriptional and possibly post-transcriptional levels in nudt6-2 nudt7. The nudt6-2 nudt7 double mutant exhibits autoimmune phenotypes that are modulated by temperature and fully dependent on EDS1. The nudt6-2 nudt7 mutation causes EDS1 nuclear accumulation shortly after the establishment of autoimmunity caused by the temperature shift. We found that a low ammonium/nitrate ratio in growth media leads to a higher level of nitrite-dependent nitric oxide (NO) production in nudt6-2 nudt7, and NO acts in a positive feedback loop with EDS1 to promote the autoimmunity. The low ammonium/nitrate ratio also enhances autoimmunity in snc1-1 and cpr1, two other autoimmune mutants in Arabidopsis. Our study indicates that Arabidopsis senses the ammonium/nitrate ratio as an input signal to determine the amplitude of the EDS1-mediated defense response, probably through the modulation of NO production. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.