Published in

North Carolina State University, BioResources, 4(16), p. 6661-6668, 2021

DOI: 10.15376/biores.16.4.6661-6668

Links

Tools

Export citation

Search in Google Scholar

Investigation of pore size distribution by mercury intrusion porosimetry (MIP) technique applied on different OSB panels

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Mercury intrusion porosimetry (MIP) is a technique used to characterize the pore size distribution and resin penetration in lignocellulosic materials, such as oriented strand board specimens (OSB), a multilayer panel utilized in structural applications. The method is based on the isostatic injection, under very high pressure, of a non-wetting fluid (mercury) into the porous material to determine parameters such as pore size distribution and percentage of porosity of the specimens. In this study, five different OSB were analyzed; they contained different wood species, resin type, and resin content. The panels manufactured with castor oil polyurethane resin showed porosity values in the range of 54.7 and 27.8%. This was a promising result compared with those obtained for panels made with phenolic resins, which are currently commercialized in Brazil.