Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Foods, 11(10), p. 2878, 2021

DOI: 10.3390/foods10112878

Links

Tools

Export citation

Search in Google Scholar

An Integrative View of the Role of Lachancea thermotolerans in Wine Technology

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The interest in Lachancea thermotolerans, a yeast species with unusual characteristics, has notably increased in all ecological, evolutionary, and industrial aspects. One of the key characteristics of L. thermotolerans is the production of high quantities of lactic acid compared to other yeast species. Its evolution has mainly been driven by the influence of the environment and domestication, allowing several metabolic traits to arise. The molecular regulation of the fermentative process in L. thermotolerans shows interesting routes that play a complementary or protective role against fermentative stresses. One route that is activated under this condition is involved in the production of lactic acid, presenting a complete system for its production, showing the involvement of several enzymes and transporters. In winemaking, the use of L. thermotolerans is nowadays mostly focused in early–medium-maturity grape varieties, in which over-ripening can produce wines lacking acidity and with high concentrations of ethanol. Recent studies have reported new positive influences on quality apart from lactic acid acidification, such as improvements in color, glutathione production, aroma, malic acid, polysaccharides, or specific enzymatic activities that constitute interesting new criteria for selecting better strains. This positive influence on winemaking has increased the availability of commercial strains during recent years, allowing comparisons among some of those products. Initially, the management of L. thermotolerans was thought to be combined with Saccaharomyces cerevisiae to properly end alcoholic fermentation, but new studies are innovating and reporting combinations with other key enological microorganisms such as Schizosaccharomyces pombe, Oenocous oeni, Lactiplantibacillus plantarum, or other non-Saccharomyces.