Dissemin is shutting down on January 1st, 2025

Published in

Physics and Simulation of Optoelectronic Devices XV

DOI: 10.1117/12.702733

Links

Tools

Export citation

Search in Google Scholar

Maximising the gain: optimising the carrier distribution in InGaAs quantum dot lasers

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The performance of lasers with self assembled quantum dot active regions is significantly affected by the presence of the two dimensional wetting layer and the other states necessary for carrier injection due to the manner in which carriers are distributed amongst the various states. In this work we describe three approaches to overcome the low value of maximum saturated gain, which has been observed by many groups worldwide, and explain the approaches in terms of the impact on the distribution of carriers within the available states. We present results of direct measurements of the modal gain and measurements that indicate the form of the carrier distribution within the samples to justify our argument. The structures examined include the use of a high growth temperature to smooth the matrix layer, the use of p-type modulation doping and the use of InAlAs capping layers and all have been grown by solid source molecular beam epitaxy. We demonstrate CW operation at 1.3μm for 1mm long devices with uncoated facets and very low threshold current density (