Dissemin is shutting down on January 1st, 2025

Published in

Climate-Smart Forestry in Mountain Regions, p. 317-359, 2021

DOI: 10.1007/978-3-030-80767-2_9

Links

Tools

Export citation

Search in Google Scholar

Smart Harvest Operations and Timber Processing for Improved Forest Management

Book chapter published in 2021 by G. Picchi ORCID, J. Sandak, S. Grigolato, P. Panzacchi, R. Tognetti
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractClimate-smart forestry can be regarded as the evolution of traditional silviculture. As such, it must rely on smart harvesting equipment and techniques for a reliable and effective application. The introduction of sensors and digital information technologies in forest inventories, operation planning, and work execution enables the achievement of the desired results and provides a range of additional opportunities and data. The latter may help to better understand the results of management options on forest health, timber quality, and many other applications. The introduction of intelligent forest machines may multiply the beneficial effect of digital data gathered for forest monitoring and management, resulting in forest harvesting operations being more sustainable in terms of costs and environment. The interaction can be pushed even further by including the timber processing industry, which assesses physical and chemical characteristics of wood with sensors to optimize the transformation process. With the support of an item-level traceability system, the same data could provide a formidable contribution to CSF. The “memory” of wood could support scientists to understand the response of trees to climate-induced stresses and to design accordingly an adaptive silviculture, contributing to forest resilience in the face of future changes due to human-induced climate alteration.