Published in

Oxford University Press, Carcinogenesis: Integrative Cancer Research, 1(43), p. 12-20, 2021

DOI: 10.1093/carcin/bgab111

Links

Tools

Export citation

Search in Google Scholar

TBX1 functions as a putative oncogene of breast cancer through promoting cell cycle progression

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract We have previously identified a genetic variant, rs34331122 in the 22q11.21 locus, as being associated with breast cancer risk in a genome-wide association study. This novel variant is located in the intronic region of the T-box transcription factor 1 (TBX1) gene. Cis-expression quantitative trait loci analysis showed that expression of TBX1 was regulated by the rs34331122 variant. In the current study, we investigated biological functions and potential molecular mechanisms of TBX1 in breast cancer. We found that TBX1 expression was significantly higher in breast cancer tumor tissues than adjacent normal breast tissues and increased with tumor stage (P < 0.05). We further knocked-down TBX1 gene expression in three breast cancer cell lines, MDA-MB-231, MCF-7 and T47D, using small interfering RNAs and examined consequential changes on cell oncogenicity and gene expression. TBX1 knock-down significantly inhibited breast cancer cell proliferation, colony formation, migration and invasion. RNA sequencing and flow cytometry analysis revealed that TBX1 knock-down in breast cancer cells induced cell cycle arrest in the G1 phase through disrupting expression of genes involved in the cell cycle pathway. Furthermore, survival analysis using the online Kaplan–Meier Plotter suggested that higher TBX1 expression was associated with worse outcomes in breast cancer patients, especially for estrogen receptor-positive breast cancer, with HRs (95% CIs) for overall survival (OS) and distant metastasis free survival (DMFS) of 1.5 (1.05–2.15) and 1.55 (1.10–2.18), respectively. In conclusion, our results suggest that the TBX1 gene may act as a putative oncogene of breast cancer through regulating expressions of cell cycle-related genes.