Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, International Journal of Radiation Biology, 11(90), p. 1062-1067, 2014

DOI: 10.3109/09553002.2014.925604

Links

Tools

Export citation

Search in Google Scholar

Developing a physiologically based approach for modeling plutonium decorporation therapy with DTPA.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: To develop a physiologically based compartmental approach for modeling plutonium decorporation therapy with the chelating agent Diethylenetriaminepentaacetic acid (Ca-DTPA/Zn-DTPA). Materials and methods: Model calculations were performed using the software package SAAM II (©The Epsilon Group, Charlottesville, Virginia, USA). The Luciani/Polig compartmental model with age-dependent description of the bone recycling processes was used for the biokinetics of plutonium. Results: The Luciani/Polig model was slightly modified in order to account for the speciation of plutonium in blood and for the different affinities for DTPA of the present chemical species. The introduction of two separate blood compartments, describing low-molecular-weight complexes of plutonium (Pu-LW) and transferrin-bound plutonium (Pu-Tf) respectively, and one additional compartment describing plutonium in the interstitial fluids was performed successfully. Conclusions: The next step of the work is the modeling of the chelation process, coupling the physiologically modified structure with the biokinetic model for DTPA. Results of animal studies performed under controlled conditions will enable to better understand the principles of the involved mechanisms.