Published in

Soil Science Society of America, Soil Science Society of America Journal, 6(71), p. 1740

DOI: 10.2136/sssaj2006.0177

Links

Tools

Export citation

Search in Google Scholar

Mapping clay content across boundaries at the landscape scale with electromagnetic induction.

Journal article published in 2007 by U. Weller, W. zu Castell ORCID, M. Zipprich, M. Sommer, W. Zu Castell, M. Wehrhan
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Detailed information on soil textural heterogeneity is essential for land management and conservation. It is well known that in individual fields, measurement of the soil's apparent electrical conductivity (ECa) offers an opportunity to map the clay content of soils with free drainage under a humid climate. At the catchment scale, however, units of different land management and differing sampling dates add variation to ECa and constrain the mapping across field boundaries. We analyzed their influence and compared three approaches for applying electromagnetic induction (EMv) to clay-content mapping at the landscape scale across the boundaries of individual fields and different sampling dates. In the study region, a separate calibration of the relation between clay and ECa for each field and sampling date (fieldwise calibration) yielded satisfactory clay-content predictions only if the costly precondition of sufficient calibration points for each field was fulfilled. We propose a method (nearest-neighbors ECa correction) for unifying ECa across boundaries based only on the ECa data themselves, and the assumption of continuity of textural properties at field boundaries, which was fulfilled in the landscape studied. Prediction is calibrated once for the entire landscape, which allows a reduced set of calibration points. The coefficient of determination for predicting clay content (here, including silt