Published in

American Chemical Society, Environmental Science and Technology, 9(48), p. 4963-4970, 2014

DOI: 10.1021/es501180x

Links

Tools

Export citation

Search in Google Scholar

Does long-term irrigation with untreated wastewater accelerate the dissipation of pharmaceuticals in soil?

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Long-term irrigation with untreated wastewater may increase soil microbial adaptation to pollution load and lead to enhanced natural attenuation. We hypothesized that long-term wastewater irrigation accelerates the dissipation of pharmaceuticals. To test our hypothesis we performed an incubation experiment with soils from the Mezquital Valley, Mexico that were irrigated for 0, 14, or 100 years. The results showed that the dissipation half-lives (DT50) of diclofenac (< 0.1-1.4 days), bezafibrate (< 0.1-4.8 days), sulfamethoxazole (2-33 days), naproxen (6-19 days), carbamazepine (355-1,624 days), and ciprofloxacin were not affected by wastewater irrigation. Trimethoprim dissipation was even slower in soils irrigated for 100 years (DT50: 45-72 days) than in non-irrigated soils (DT50: 12-16 days), was negatively correlated with soil organic matter content and soil-water distribution coefficients, and was inhibited in sterilized soils. Applying a kinetic fate model indicated that long-term irrigation enhanced sequestration of cationic or uncharged trimethoprim and uncharged carbamazepine, but did not affect sequestration of fast-dissipating zwitterions or negatively charged pharmaceuticals. We conclude that microbial adaptation processes play a minor role for pharmaceutical dissipation in wastewater irrigated soils, while organic matter accumulation in these soils can retard trimethoprim and carbamazepine dissipation.