Published in

Springer, Journal of Comparative Physiology B: Biochemical, Systems, and Environmental Physiology, 2(192), p. 235-245, 2021

DOI: 10.1007/s00360-021-01413-6

Links

Tools

Export citation

Search in Google Scholar

Leaf-cutting ants’ critical and voluntary thermal limits show complex responses to size, heating rates, hydration level, and humidity

Journal article published in 2021 by Cleverson Lima, André Frazão Helene, Agustín Camacho ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThermal variation has complex effects on organisms and they respond to these effects through combined behavioral and physiological mechanisms. However, it is less clear how these traits combine in response to changes in body condition (e.g., size, hydration) and environmental factors that surround the heating process (e.g., relative humidity, start temperatures, heating rates). We tested whether these body conditions and environmental factors influence sequentially measured Voluntary Thermal Maxima (VTmax) and Critical Thermal Maxima, (CTmax) in leaf-cutting ants (Atta sexdens rubropilosa, Forel, 1908). VTmax and CTmax reacted differently to changes in body size and relative humidity, but exhibited similar responses to hydration level, start temperature, and heating rate. Strikingly, the VTmax of average-sized workers was closer to their CTmax than the VTmax of their smaller and bigger sisters, suggesting foragers maintain normal behavior at higher temperatures than sister ants that usually perform tasks within the colony. Previous experiments based on hot plate designs might overestimate ants’ CTmax. VTmax and CTmax may respond concomitantly or not to temperature rises, depending on body condition and environmental factors.