Published in

Wiley, Movement Disorders, 10(36), p. 2293-2302, 2021

DOI: 10.1002/mds.28654

Links

Tools

Export citation

Search in Google Scholar

Dopaminergic and Serotonergic Degeneration and Cortical [<sup>18</sup>F]Fluorodeoxyglucose Positron Emission Tomography in De Novo Parkinson's Disease

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBackgroundDegeneration of the nigrostriatal dopaminergic (DA) and the raphe‐thalamic serotonergic (SE) systems is among the earliest changes observed in Parkinson's disease (PD). The consequences of those changes on brain metabolism, especially regarding their impact on the cortex, are poorly understood.ObjectivesUsing multi‐tracer molecular imaging, we assessed in a cohort of drug‐naive PD patients the association between cortical metabolism and DA and SE system deafferentation of either striatum or thalamus, and we explored whether this association was mediated by either striatum or thalamus metabolism.MethodsWe recruited 96 drug‐naive PD patients (aged 71.9 ± 7.5 years) who underwent [123I]ioflupane single‐photon emission computed tomography ([123I]FP‐CIT‐SPECT) and brain [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG‐PET). We used a voxel‐wise analysis of [18F]FDG‐PET images to correlate regional metabolism with striatal DA and thalamic SE innervation as assessed using [123I]FP‐CIT‐SPECT.ResultsWe found that [123I]FP‐CIT specific to nondisplaceable binding ratio (SBR) and glucose metabolism positively correlated with one another in the deep gray matter (thalamus: P = 0.001, r = 0.541; caudate P = 0.001, r = 0.331; putamen P = 0.001, r = 0.423). We then observed a direct correlation between temporoparietal metabolism and caudate DA innervation, as well as a direct correlation between prefrontal metabolism and thalamus SE innervation. The effect of caudate [123I]FP‐CIT SBR values on temporoparietal metabolism was mediated by caudate metabolic values (percentage mediated: 89%, P‐value = 0.008), and the effect of thalamus [123I]FP‐CIT SBR values on prefrontal metabolism was fully mediated by thalamus metabolic values (P < 0.001).ConclusionsThese data suggest that the impact of deep gray matter monoaminergic deafferentation on cortical function is mediated by striatal and thalamic metabolism in drug‐naive PD. © 2021 International Parkinson and Movement Disorder Society