Published in

Springer, Photochemical & Photobiological Sciences, 11(5), p. 1068-1077, 2006

DOI: 10.1039/b608833c

Links

Tools

Export citation

Search in Google Scholar

Pyrene-p-tert-butylcalixarenes inclusion complexes formation: a surface photochemistry study

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Diffuse reflectance and luminescence techniques were used to study the photophysics and photochemistry of pyrene within p-tert-butylcalix[n]arenes with n = 4, 6, and 8, and to study their ability to form inclusion complexes in heterogeneous media. Evidences for inclusion complex formation were found for the three hosts under study. Ground state diffuse reflectance results have shown the formation of ground state dimers of pyrene inside the cavity of calix[ 6] arene and calix[ 8] arene, with this feature much more evident for calix[ 6] arene. For calix[ 4] arene, only a monomer fits inside the cavity and the presence of pyrene microcrystals outside the cavity was detected. A luminescence lifetime distribution analysis was performed, revealing the presence of prompt emissions from the pyrene microcrystals outside the cavity in the case of calix[ 4] arene and from the constrained dimers inside the cavities of calix[ 6] arene and calix[ 8] arene. Transient absorption results have shown the presence of pyrene radical cation and also of trapped electrons for the three hosts under study. The formation of the phenoxyl radical of the calixarene following the laser pulsed excitation of pyrene at 355 nm is increased for calix[ 6] arene and calix[ 8] arene. This feature is particularly relevant for calix[ 6] arene, suggesting a very favourable situation for the hydrogen atom abstraction to occur. The analysis of the degradation products revealed the presence of hydroxypyrene as a major photodegradation product for the three hosts. Dihydro-hydroxypyrene was also formed in the case of calix[ 6] arene and calix[ 8] arene. The formation of the calixarene's phenoxyl radical and subsequent hydrogen abstraction is consistent with the formation of dihydro-dihydroxypyrene.