Published in

MDPI, Biology, 12(10), p. 1260, 2021

DOI: 10.3390/biology10121260

Links

Tools

Export citation

Search in Google Scholar

Quantitative Rapid Test for Detection and Monitoring of Active Pulmonary Tuberculosis in Nonhuman Primates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Nonhuman primates (NHPs) are relevant models to study the pathogenesis of tuberculosis (TB) and evaluate the potential of TB therapies, but rapid tools allowing diagnosis of active pulmonary TB in NHPs are lacking. This study investigates whether low complexity lateral flow assays utilizing upconverting reporter particles (UCP-LFAs) developed for rapid detection of human serum proteins can be applied to detect and monitor active pulmonary TB in NHPs. UCP-LFAs were used to assess serum proteins levels and changes in relation to the MTB challenge dosage, lung pathology, treatment, and disease outcome in experimentally MTB-infected macaques. Serum levels of SAA1, IP-10, and IL-6 showed a significant increase after MTB infection in rhesus macaques and correlated with disease severity as determined by pathology scoring. Moreover, these biomarkers could sensitively detect the reduction of bacterial levels in the lungs of macaques due to BCG vaccination or drug treatment. Quantitative measurements by rapid UCP-LFAs specific for SAA1, IP-10, and IL-6 in serum can be utilized to detect active progressive pulmonary TB in macaques. The UCP-LFAs thus offer a low-cost, convenient, and minimally invasive diagnostic tool that can be applied in studies on TB vaccine and drug development involving macaques.