Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(11), 2021

DOI: 10.1038/s41598-021-02685-2

Links

Tools

Export citation

Search in Google Scholar

Operando acoustic emission monitoring of degradation processes in lithium-ion batteries with a high-entropy oxide anode

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIn recent years, high-entropy oxides are receiving increasing attention for electrochemical energy-storage applications. Among them, the rocksalt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O (HEO) has been shown to be a promising high-capacity anode material. Because high-entropy oxides constitute a new class of electrode materials, systematic understanding of their behavior during ion insertion and extraction is yet to be established. Here, we probe the conversion-type HEO material in lithium half-cells by acoustic emission (AE) monitoring. Especially the clustering of AE signals allows for correlations of acoustic events with various processes. The initial cycle was found to be the most acoustically active because of solid-electrolyte interphase formation and chemo-mechanical degradation. In the subsequent cycles, AE was mainly detected during delithiation, a finding we attribute to the progressive crack formation and propagation. Overall, the data confirm that the AE technology as a non-destructive operando technique holds promise for gaining insight into the degradation processes occurring in battery cells during cycling.