Dissemin is shutting down on January 1st, 2025

Published in

Medical academic journal, 3(21), p. 97-102, 2021

DOI: 10.17816/maj79206

Links

Tools

Export citation

Search in Google Scholar

Receptor-binding domain of SARS-CoV-2 contribution to the neutrophil activation during 100 nm particle-induced immune response in conduction airway mucosa of mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

BACKGROUND: Airborne pathogens such as virus particles undergo elimination from the respiratory tract by mucociliary clearance and phagocytosis by immune cells. The data about phagocytic cell type infiltration and stimuli that attract phagocytic cells to conducting airway are required for the anti-virus immune response mechanism understanding and the treatment strategy development. AIM: To detect the role of the receptor-binding domain of SARS-CoV-2 in neutrophil immune response activation in conducting airway mucosa after 100 nm particles application. MATERIALS AND METHODS: C57BL/6 mice received an oropharyngeal application of fluorescent 100 nm particles suspended in the receptor-binding domain of SARS-CoV-2 solution. 24 hours after, conducting airways of mice were dissected and subjected for immunohistochemistry as whole-mounts. Three-dimensional images of conducting airway regions were obtained using confocal microscopy. Quantitative image analysis was performed to estimate the ingestion activity of neutrophils in conducting airway mucosa. RESULTS: Neutrophil migration to conducting airway mucosa was detected in case of the application of particles in receptor-binding domain solution, but not in phosphate buffer or bovine serum albumin solution. Receptor-binding domain solution alone also induced neutrophil migration to conducting airway mucosa. Infiltrating conducting airway wall mucosa neutrophils contributed to particles internalization. CONCLUSIONS: The receptor-binding domain of SARS-CoV-2 can activate the neutrophil-mediated response in conducting airway mucosa.