Published in

Springer, Brain Structure and Function, 1(227), p. 49-62, 2021

DOI: 10.1007/s00429-021-02388-4

Links

Tools

Export citation

Search in Google Scholar

Topographical functional correlates of interindividual differences in executive functions in young healthy twins

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractExecutive functions (EF) are a set of higher-order cognitive abilities that enable goal-directed behavior by controlling lower-level operations. In the brain, those functions have been traditionally associated with activity in the Frontoparietal Network, but recent neuroimaging studies have challenged this view in favor of more widespread cortical involvement. In the present study, we aimed to explore whether the network that serves as critical hubs at rest, which we term network reliance, differentiate individuals as a function of their level of EF. Furthermore, we investigated whether such differences are driven by genetic as compared to environmental factors. For this purpose, resting-state functional magnetic resonance imaging data and the behavioral testing of 453 twins from the Colorado Longitudinal Twins Study were analyzed. Separate indices of EF performance were obtained according to a bifactor unity/diversity model, distinguishing between three independent components representing: Common EF, Shifting-specific and Updating-specific abilities. Through an approach of step-wise in silico network lesioning of the individual functional connectome, we show that interindividual differences in EF are associated with different dependencies on neural networks at rest. Furthermore, these patterns show evidence of mild heritability. Such findings add knowledge to the understanding of brain states at rest and their connection with human behavior, and how they might be shaped by genetic influences.