Published in

Public Library of Science, PLOS Global Public Health, 12(1), p. e0000088, 2021

DOI: 10.1371/journal.pgph.0000088

Links

Tools

Export citation

Search in Google Scholar

Do community-based active case-finding interventions have indirect impacts on wider TB case detection and determinants of subsequent TB testing behaviour? A systematic review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Community-based active case-finding (ACF) may have important impacts on routine TB case-detection and subsequent patient-initiated diagnosis pathways, contributing “indirectly” to infectious diseases prevention and care. We investigated the impact of ACF beyond directly diagnosed patients for TB, using routine case-notification rate (CNR) ratios as a measure of indirect effect. We systematically searched for publications 01-Jan-1980 to 13-Apr-2020 reporting on community-based ACF interventions compared to a comparison group, together with review of linked manuscripts reporting knowledge, attitudes, and practices (KAP) outcomes or qualitative data on TB testing behaviour. We calculated CNR ratios of routine case-notifications (i.e. excluding cases identified directly through ACF) and compared proxy behavioural outcomes for both ACF and comparator communities. Full text manuscripts from 988 of 23,883 abstracts were screened for inclusion; 36 were eligible. Of these, 12 reported routine notification rates separately from ACF intervention-attributed rates, and one reported any proxy behavioural outcomes. Two further studies were identified from screening 1121 abstracts for linked KAP/qualitative manuscripts. 8/12 case-notification studies were considered at critical or serious risk of bias. 8/11 non-randomised studies reported bacteriologically-confirmed CNR ratios between 0.47 (95% CI:0.41–0.53) and 0.96 (95% CI:0.94–0.97), with 7/11 reporting all-form CNR ratios between 0.96 (95% CI:0.88–1.05) and 1.09 (95% CI:1.02–1.16). One high-quality randomised-controlled trial reported a ratio of 1.14 (95% CI 0.91–1.43). KAP/qualitative manuscripts provided insufficient evidence to establish the impact of ACF on subsequent TB testing behaviour. ACF interventions with routine CNR ratios >1 suggest an indirect effect on wider TB case-detection, potentially due to impact on subsequent TB testing behaviour through follow-up after a negative ACF test or increased TB knowledge. However, data on this type of impact are rarely collected. Evaluation of routine case-notification, testing and proxy behavioural outcomes in intervention and comparator communities should be included as standard methodology in future ACF campaign study designs.