Published in

American Chemical Society, Journal of Physical Chemistry C, 46(113), p. 19863-19866, 2009

DOI: 10.1021/jp907504q

Links

Tools

Export citation

Search in Google Scholar

Tuning photoluminescence of Ge/GeO2 core/shell nanoparticles by strain

Journal article published in 2009 by C. L. Yuan, H. Cai, Pooi See Lee, J. Guo, J. He ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The distribution of strain field plays an important role in deciding the physical properties of nanocrystals. The growth strain of Ge/GeO2 core/shell nanoparticles embedded in a regular array of Al2O3 nanoparticles and its resulting effect on the optical properties are investigated. Two-dimensional finite element calculations clearly demonstrate that Ge/GeO2 nanoparticles certainly experienced greater compressive strain in Al2O3 nanoparticles than in Al2O3 thin film, especially at the GeO2 shell area. This may lead to much more strain-relaxing defects produced at the GeO2 shell in Al2O3 nanoparticles. Meanwhile, the photogenerated excitons/electron−hole pairs are localized by defects located at the GeO2 shell and are forced to recombine while being spatially confined in the Al2O3 nanoparticles. These effects might contribute to the observed intensity enhancement and blue shift of the photoluminescence peaks for the sample with Ge/GeO2 core/shell nanoparticles embedded in Al2O3 nanoparticles. The findings presented here provide physical insight and offer useful guidelines to controllably modify the optical properties of semiconductor nanoparticles through strain engineering.