Published in

Wiley, ELECTROPHORESIS, 24(28), p. 4765-4768, 2007

DOI: 10.1002/elps.200700259

Links

Tools

Export citation

Search in Google Scholar

Faster and improved microchip electrophoresis using a capillary bundle

Journal article published in 2007 by Yi Sun ORCID, Yien Chian Kwok, Nam-Trung Nguyen
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Joule heating generated in capillary electrophoresis (CE) microchips is known to affect temperature gradient, electrophoretic mobility, diffusion of analytes, and ultimately the efficiency and reproducibility of the separation. One way of reducing the effect of Joule heating is to decrease the cross-section area of microchannels. Currently, due to the limit of fabrication technique and detection apparatus, the typical dimensions of CE microchannels are in the range of 50 μm to 200 μm. In this paper, we propose a novel approach of performing microchip CE in a bundle of extremely narrow channels by using photonic crystal fiber (PCF) as separation column. The PCF was simply encapsulated in a polymethylmethacrylate (PMMA) microchannel right after a T-shaped injector. CE was simultaneously but independently carried out in 54 narrow capillaries, each capillary with diameter of 3.7 μm. The capillary bundle could sustain high electric field strength up to 1000 V/cm due to efficient heat dissipation, thus faster and enhanced separation was attained.