Published in

MDPI, Sustainability, 24(13), p. 13709, 2021

DOI: 10.3390/su132413709

Links

Tools

Export citation

Search in Google Scholar

Re-Allocation of Distributed Generations Using Available Renewable Potential Based Multi-Criterion-Multi-Objective Hybrid Technique

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Integration of Distributed generations (DGs) and capacitor banks (CBs) in distribution systems (DS) have the potential to enhance the system’s overall capabilities. This work demonstrates the application of a hybrid optimization technique the applies an available renewable energy potential (AREP)-based, hybrid-enhanced grey wolf optimizer–particle swarm optimization (AREP-EGWO-PSO) algorithm for the optimum location and sizing of DGs and CBs. EGWO is a metaheuristic optimization technique stimulated by grey wolves, and PSO is a swarm-based metaheuristic optimization algorithm. Hybridization of both algorithms finds the optimal solution to a problem through the movement of the particles. Using this hybrid method, multi-criterion solutions are obtained, such as technical, economic, and environmental, and these are enriched using multi-objective functions (MOF), namely minimizing active power losses, voltage deviation, the total cost of electrical energy, total emissions from generation sources and enhancing the voltage stability index (VSI). Five different operational cases were adapted to validate the efficacy of the proposed scheme and were performed on two standard distribution systems, namely, IEEE 33- and 69-bus radial distribution systems (RDSs). Notably, the proposed AREP-EGWO-PSO algorithm compared the AREP at the candidate locations and re-allocated the DGs with optimal re-sizing when the EGWO-PSO algorithm failed to meet the AREP constraints. Further, the simulated results were compared with existing optimization algorithms considered in recent studies. The obtained results and analysis show that the proposed AREP-EGWO-PSO re-allocates the DGs effectively and optimally, and that these objective functions offer better results, almost similar to EGWO-PSO results, but more significant than other existing optimization techniques.