Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Express, 1(30), p. 112, 2021

DOI: 10.1364/oe.446162

Links

Tools

Export citation

Search in Google Scholar

Correction of non-uniform angular velocity and sub-pixel jitter in optical scanning

Journal article published in 2021 by Bartlomiej Kowalski ORCID, Vyas Akondi ORCID, Alfredo Dubra ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Optical scanners are widely used in high-resolution scientific, medical, and industrial devices. The accuracy and precision of these instruments are often limited by angular speed fluctuations due to rotational inertia and by poor synchronization between scanning and light detection, respectively. Here we demonstrate that both problems can be mitigated by recording scanner orientation in synchrony with light detection, followed by data resampling. This approach is illustrated with synthetic and experimental data from a point-scanning microscope with a resonant scanner and a non-resonant scanner. Fitting of the resonant scanner orientation data to a cosine model was used to correct image warping and sampling jitter, as well as to precisely interleave image lines collected during the clockwise and counterclockwise resonant scanner portions of the rotation cycle. Vertical scanner orientation data interpolation was used to correct image distortion due to angular speed fluctuations following abrupt control signal changes.