Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nanomaterials, 12(11), p. 3378, 2021

DOI: 10.3390/nano11123378

Links

Tools

Export citation

Search in Google Scholar

Semiconductor Nanowire Field-Effect Transistors as Sensitive Detectors in the Far-Infrared

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Engineering detection dynamics in nanoscale receivers that operate in the far infrared (frequencies in the range 0.1–10 THz) is a challenging task that, however, can open intriguing perspectives for targeted applications in quantum science, biomedicine, space science, tomography, security, process and quality control. Here, we exploited InAs nanowires (NWs) to engineer antenna-coupled THz photodetectors that operated as efficient bolometers or photo thermoelectric receivers at room temperature. We controlled the core detection mechanism by design, through the different architectures of an on-chip resonant antenna, or dynamically, by varying the NW carrier density through electrostatic gating. Noise equivalent powers as low as 670 pWHz−1/2 with 1 µs response time at 2.8 THz were reached.