Published in

Nature Research, Nature Communications, 1(12), 2021

DOI: 10.1038/s41467-021-27565-1

Links

Tools

Export citation

Search in Google Scholar

Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMetal halide perovskite photodiodes (PPDs) offer high responsivity and broad spectral sensitivity, making them attractive for low-cost visible and near-infrared sensing. A significant challenge in achieving high detectivity in PPDs is lowering the dark current density (JD) and noise current (in). This is commonly accomplished using charge-blocking layers to reduce charge injection. By analyzing the temperature dependence of JD for lead-tin based PPDs with different bandgaps and electron-blocking layers (EBL), we demonstrate that while EBLs eliminate electron injection, they facilitate undesired thermal charge generation at the EBL-perovskite interface. The interfacial energy offset between the EBL and the perovskite determines the magnitude and activation energy of JD. By increasing this offset we realized a PPD with ultralow JD and in of 5 × 10−8 mA cm−2 and 2 × 10−14 A Hz−1/2, respectively, and wavelength sensitivity up to 1050 nm, establishing a new design principle to maximize detectivity in perovskite photodiodes.