Published in

Oxford University Press, The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 4(77), p. 664-672, 2021

DOI: 10.1093/gerona/glab376

Links

Tools

Export citation

Search in Google Scholar

Higher Angiotensin II Type 1 Receptor Levels and Activity in the Postmortem Brains of Older Persons with Alzheimer’s Dementia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Aging is a key risk factor in Alzheimer’s dementia (AD) development and progression. The primary dementia-protective benefits of angiotensin II subtype 1 receptor (AT1R) blockers are believed to arise from systemic effects on blood pressure. However, a brain-specific renin-angiotensin system (b-RAS) exists, which can be altered by AT1R blockers. Brain RAS acts mainly through 3 angiotensin receptors: AT1R, AT2R, and AT4R. Changes in these brain angiotensin receptors may accelerate the progression of AD. Using postmortem frontal cortex brain samples of age- and sex-matched cognitively normal individuals (n = 30) and AD patients (n = 30), we sought to dissect the b-RAS changes associated with AD and assess how these changes correlate with brain markers of oxidative stress, inflammation, and mitochondrial dysfunction as well as amyloid-β and paired helical filament tau pathologies. Our results show higher protein levels of the pro-inflammatory AT1R and phospho-ERK (pERK) in the brains of AD participants. Brain AT1R levels and pERK correlated with higher oxidative stress, lower cognitive performance, and higher tangle and amyloid-β scores. This study identifies molecular changes in b-RAS and offers insight into the role of b-RAS in AD-related brain pathology.