Dissemin is shutting down on January 1st, 2025

Published in

BMJ Publishing Group, BMJ Open, 12(11), p. e052902, 2021

DOI: 10.1136/bmjopen-2021-052902

Links

Tools

Export citation

Search in Google Scholar

Assessment of the effect of a comprehensive chest radiograph deep learning model on radiologist reports and patient outcomes: a real-world observational study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ObjectivesArtificial intelligence (AI) algorithms have been developed to detect imaging features on chest X-ray (CXR) with a comprehensive AI model capable of detecting 124 CXR findings being recently developed. The aim of this study was to evaluate the real-world usefulness of the model as a diagnostic assistance device for radiologists.DesignThis prospective real-world multicentre study involved a group of radiologists using the model in their daily reporting workflow to report consecutive CXRs and recording their feedback on level of agreement with the model findings and whether this significantly affected their reporting.SettingThe study took place at radiology clinics and hospitals within a large radiology network in Australia between November and December 2020.ParticipantsEleven consultant diagnostic radiologists of varying levels of experience participated in this study.Primary and secondary outcome measuresProportion of CXR cases where use of the AI model led to significant material changes to the radiologist report, to patient management, or to imaging recommendations. Additionally, level of agreement between radiologists and the model findings, and radiologist attitudes towards the model were assessed.ResultsOf 2972 cases reviewed with the model, 92 cases (3.1%) had significant report changes, 43 cases (1.4%) had changed patient management and 29 cases (1.0%) had further imaging recommendations. In terms of agreement with the model, 2569 cases showed complete agreement (86.5%). 390 (13%) cases had one or more findings rejected by the radiologist. There were 16 findings across 13 cases (0.5%) deemed to be missed by the model. Nine out of 10 radiologists felt their accuracy was improved with the model and were more positive towards AI poststudy.ConclusionsUse of an AI model in a real-world reporting environment significantly improved radiologist reporting and showed good agreement with radiologists, highlighting the potential for AI diagnostic support to improve clinical practice.