Published in

IOP Publishing, Flexible and Printed Electronics, 4(6), p. 045018, 2021

DOI: 10.1088/2058-8585/ac45de

Links

Tools

Export citation

Search in Google Scholar

Flexible, scalable, and efficient thermoelectric touch detector based on PDMS and graphite flakes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract This paper presents freestanding thermoelectric touch detectors consisting of graphite conductive flakes into a polydimethylsiloxane matrix. An optimal concentration of graphite flakes (45 wt%) lead to robust and homogeneous detectors that exhibited signal-noise ratio values up to 170 with rise and falling times below 1 s and 7 s, respectively. The detectors performance was stable over continuous operation and did not reveal significant degradation while bended under different curvature radii (45, 25 and 15 mm) and consecutive bending cycles. Moreover, the twist of the thermal gradient direction between the electrodes of the detector enables a Yes or No response which opens new usage possibilities. Therefore, this work provides an efficient way to develop robust, low-cost, and scalable thermal detectors with potential use in wearable technologies.