Published in

MDPI, Forests, 1(13), p. 4, 2021

DOI: 10.3390/f13010004

Links

Tools

Export citation

Search in Google Scholar

Impact of Forest Fires on Air Quality in Wolgan Valley, New South Wales, Australia—A Mapping and Monitoring Study Using Google Earth Engine

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Forests are an important natural resource and are instrumental in sustaining environmental sustainability. Burning biomass in forests results in greenhouse gas emissions, many of which are long-lived. Precise and consistent broad-scale monitoring of fire intensity is a valuable tool for analyzing climate and ecological changes related to fire. Remote sensing and geographic information systems provide an opportunity to improve current practice’s accuracy and performance. Spectral indices techniques such as normalized burn ratio (NBR) have been used to identify burned areas utilizing satellite data, which aid in distinguishing burnt areas using their standard spectral responses. For this research, we created a split-panel web-based Google Earth Engine app for the geo-visualization of the region severely affected by forest fire using Sentinel 2 weekly composites. Then, we classified the burn severity in areas affected by forest fires in Wolgan Valley, New South Wales, Australia, and the surrounding area through Difference Normalized Burn Ratio (dNBR). The result revealed that the region’s burnt area increased to 6731 sq. km in December. We also assessed the impact of long-term rainfall and land surface temperature (LST) trends over the study region to justify such incidents. We further estimated the effect of such incidents on air quality by analyzing the changes in the column number density of carbon monoxide and nitrogen oxides. The result showed a significant increase of about 272% for Carbon monoxide and 45% for nitrogen oxides. We conclude that, despite fieldwork constraints, the usage of different NBR and web-based application platforms may be highly useful for forest management to consider the propagation of fire regimes.