Dissemin is shutting down on January 1st, 2025

Published in

Frontiers Media, Frontiers in Ecology and Evolution, (9), 2021

DOI: 10.3389/fevo.2021.723558

Links

Tools

Export citation

Search in Google Scholar

Defining Biologically Meaningful Biomes Through Floristic, Functional, and Phylogenetic Data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

While we have largely improved our understanding on what biomes are and their utility in global change ecology, conservation planning, and evolutionary biology is clear, there is no consensus on how biomes should be delimited or mapped. Existing methods emphasize different aspects of biomes, with different strengths and limitations. We introduce a novel approach to biome delimitation and mapping, based upon combining individual regionalizations derived from floristic, functional, and phylogenetic data linked to environmentally trained species distribution models. We define “core Biomes” as areas where independent regionalizations agree and “transition zones” as those whose biome identity is not corroborated by all analyses. We apply this approach to delimiting the neglected Caatinga seasonally dry tropical forest biome in northeast Brazil. We delimit the “core Caatinga” as a smaller and more climatically limited area than previous definitions, and argue it represents a floristically, functionally, and phylogenetically coherent unit within the driest parts of northeast Brazil. “Caatinga transition zones” represent a large and biologically important area, highlighting that ecological and evolutionary processes work across environmental gradients and that biomes are not categorical variables. We discuss the differences among individual regionalizations in an ecological and evolutionary context and the potential limitations and utility of individual and combined biome delimitations. Our integrated ecological and evolutionary definition of the Caatinga and associated transition zones are argued to best describe and map biologically meaningful biomes.